On the Integer Normal Distribution of the Gps Ambiguities
نویسنده
چکیده
Carrier phase ambiguity resolution is the key to fast and high precision GPS kinematic positioning. Critical in the application of ambiguity resolution is the quality of the computed integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. In order to describe the quality of the integer ambiguities, their distributional properties need to be known. This contribution introduces the probability mass function of the integer least-squares ambiguities. This integer normal distribution is needed in order to infer objectively whether or not ambiguity resolution can expected to be successful. Some of its properties are discussed. Attention is given in particular to the probability of correct integer estimation. Various diagnostic measures are presented for evaluating this probability.
منابع مشابه
Evaluation of the Regularization Algorithm to Decorrelation of Covariance Matrix of Float Ambiguity in Fast Resolution of GPS Ambiguity Parameters
Precise positioning in Real Time Kinematic (RTK) applications depends on the accurate resolution of the phase ambiguities. In RTK positioning, ambiguity parameters are highly correlated, especially when the positioning rate is high. Consequently, application of de-correlation techniques for the accurate resolution of ambiguities is inevitable. Phase ambiguity as positioning observations by the ...
متن کاملThe Distribution of the Gps Baseline in Case of Integer Least-squares Ambiguity Estimation
This contribution presents the probability distribution of the ' xed' GPS baseline. This is the baseline which is used in fast and high precision GPS kinematic positioning. It follows from an ambiguity resolution process in which the carrier phase ambiguities are estimated as integers. For the estimation of the carrier phase ambiguities the principle of integer least-squares is used. By means o...
متن کاملThe least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation
The GPS double difference carrier phase measurements are ambiguous by an unknown integer number of cycles. High precision relative GPS positioning based on short observational timespan data, is possible, when reliable estimates of the integer double difference ambiguities can be determined in an efficient manner. In this contribution a new method is introduced that enables very fast integer lea...
متن کاملInteger Ambiguity Estimation with the Lambda Method
High precision relative GPS positioning is based on the very precise carrier phase measurements. In order to achieve high precision results within a short observation time span, the integer nature of the GPS double difference ambiguities has to be exploited. In this contribution we concentrate on the integer ambiguity estimation, which is one of the steps in the procedure for parameter estimati...
متن کاملRegularized Solution to Fast GPS Ambiguity Resolution
In rapid global positioning systems GPS positioning one of the key problems is to quickly determine the ambiguities of GPS carrier phase observables. Since carrier phase observations are generally collected only for a few minutes in the mode of rapid GPS positioning, the least squares floating solution of the ambiguities will be highly correlated and the decorrelation approach has often been us...
متن کامل